目录

笔记

  • 1、覆盖索引

    如果查询条件使用的是普通索引(或是联合索引的最左原则字段),查询结果是索引的字段或是主键,不用回表操作,直接返回结果,减少IO磁盘读写读取正行数据

  • 2、联合索引

    根据创建联合索引的顺序,以最左原则进行where检索,比如(age,name)以age=1 或 age= 1 and name=‘张三’可以使用索引,单以name=‘张三’ 不会使用索引,考虑到存储空间的问题,根据业务需求,将查找频繁的数据进行靠左创建索引。

  • 3、最左前缀

    联合索引的最左 N 个字段,也可以是字符串索引的最左 N 个字符

  • 4、索引下推

    在索引树检索时就直接判断索引字段条件

    like ‘hello%’ and age > 10 检索,MySQL5.6版本之前,会对匹配的数据进行回表查询。5.6版本后,会先过滤掉age<10的数据,再进行回表查询,减少回表率,提升检索速度

  • 覆盖索引:由于覆盖索引可以减少树的搜索次数,就是减少回表,直接在当前索引树下获取值,显著提升查询性能,所以使用覆盖索引是一个常用的性能优化手段。

  • 索引字段的维护总是有代价的。因此,在建立冗余索引来支持覆盖索引时就需要权衡考虑了。比如是否高频查询请求。

  • 最左前缀:可以是联合索引的最左N个字段,也可以是字符串索引的最左M个字符。

  • 如果既有联合查询,又有基于a、b各自的查询呢?查询条件里面只有b的语句,是无法使用(a,b)这个联合索引的,这时候你不得不维护另外一个索引,也就是说你需要同时维护(a,b)、(b) 这两个索引。这个时候我们可以考虑下空间问题,如果a比b字段大,那么我们当然建议使用(a,b)联合索引,再建立一个b索引,避免出现两次a占用太多空间。

  • 索引下推:首先需要5.6以上的版本才支持。索引下推就是在当前索引树下直接做判断,不需要再会表判断。

    mysql> select * from tuser where name like '张%' and age=10 and ismale=1;
    
    
     InnoDB在(name,age)索引树内部就判断了age是否等于10,对于不等于10的记录,直接判断并跳过。不用回到主索引树再判断。
    
    
    

原文

建议底部去阅读原文,还有丁奇老师的问答回复更是精华之处。

在上一篇文章中,我和你介绍了InnoDB索引的数据结构模型,今天我们再继续聊聊跟MySQL索引有关的概念。

在开始这篇文章之前,我们先来看一下这个问题:

在下面这个表T中,如果我执行 select * from T where k between 3 and 5,需要执行几次树的搜索操作,会扫描多少行?

下面是这个表的初始化语句。

mysql> create table T (
ID int primary key,
k int NOT NULL DEFAULT 0, 
s varchar(16) NOT NULL DEFAULT '',
index k(k))
engine=InnoDB;

insert into T values(100,1, 'aa'),(200,2,'bb'),(300,3,'cc'),(500,5,'ee'),(600,6,'ff'),(700,7,'gg');

图1 InnoDB的索引组织结构现在,我们一起来看看这条SQL查询语句的执行流程:

  1. 在k索引树上找到k=3的记录,取得 ID = 300;
  2. 再到ID索引树查到ID=300对应的R3;
  3. 在k索引树取下一个值k=5,取得ID=500;
  4. 再回到ID索引树查到ID=500对应的R4;
  5. 在k索引树取下一个值k=6,不满足条件,循环结束。

在这个过程中,回到主键索引树搜索的过程,我们称为回表 。可以看到,这个查询过程读了k索引树的3条记录(步骤1、3和5),回表了两次(步骤2和4)。

在这个例子中,由于查询结果所需要的数据只在主键索引上有,所以不得不回表。那么,有没有可能经过索引优化,避免回表过程呢?

覆盖索引

如果执行的语句是select ID from T where k between 3 and 5,这时只需要查ID的值,而ID的值已经在k索引树上了,因此可以直接提供查询结果,不需要回表。也就是说,在这个查询里面,索引k已经“覆盖了”我们的查询需求,我们称为覆盖索引。

由于覆盖索引可以减少树的搜索次数,显著提升查询性能,所以使用覆盖索引是一个常用的性能优化手段。

需要注意的是,在引擎内部使用覆盖索引在索引k上其实读了三个记录,R3~R5(对应的索引k上的记录项),但是对于MySQL的Server层来说,它就是找引擎拿到了两条记录,因此MySQL认为扫描行数是2。

基于上面覆盖索引的说明,我们来讨论一个问题:在一个市民信息表上,是否有必要将身份证号和名字建立联合索引?

假设这个市民表的定义是这样的:

CREATE TABLE `tuser` (
`id` int(11) NOT NULL,
`id_card` varchar(32) DEFAULT NULL,
`name` varchar(32) DEFAULT NULL,
`age` int(11) DEFAULT NULL,
`ismale` tinyint(1) DEFAULT NULL,
PRIMARY KEY (`id`),
KEY `id_card` (`id_card`),
KEY `name_age` (`name`,`age`)
) ENGINE=InnoDB

我们知道,身份证号是市民的唯一标识。也就是说,如果有根据身份证号查询市民信息的需求,我们只要在身份证号字段上建立索引就够了。而再建立一个(身份证号、姓名)的联合索引,是不是浪费空间?

如果现在有一个高频请求,要根据市民的身份证号查询他的姓名,这个联合索引就有意义了。它可以在这个高频请求上用到覆盖索引,不再需要回表查整行记录,减少语句的执行时间。

当然,索引字段的维护总是有代价的。因此,在建立冗余索引来支持覆盖索引时就需要权衡考虑了。这正是业务DBA,或者称为业务数据架构师的工作。

最左前缀原则

看到这里你一定有一个疑问,如果为每一种查询都设计一个索引,索引是不是太多了。如果我现在要按照市民的身份证号去查他的家庭地址呢?虽然这个查询需求在业务中出现的概率不高,但总不能让它走全表扫描吧?反过来说,单独为一个不频繁的请求创建一个(身份证号,地址)的索引又感觉有点浪费。应该怎么做呢?

这里,我先和你说结论吧。B+树这种索引结构,可以利用索引的“最左前缀”,来定位记录。

为了直观地说明这个概念,我们用(name,age)这个联合索引来分析。

图2 (name,age)索引示意图可以看到,索引项是按照索引定义里面出现的字段顺序排序的。

当你的逻辑需求是查到所有名字是“张三”的人时,可以快速定位到ID4,然后向后遍历得到所有需要的结果。

如果你要查的是所有名字第一个字是“张”的人,你的SQL语句的条件是"where name like ‘张%’"。这时,你也能够用上这个索引,查找到第一个符合条件的记录是ID3,然后向后遍历,直到不满足条件为止。

可以看到,不只是索引的全部定义,只要满足最左前缀,就可以利用索引来加速检索。这个最左前缀可以是联合索引的最左N个字段,也可以是字符串索引的最左M个字符。

基于上面对最左前缀索引的说明,我们来讨论一个问题:在建立联合索引的时候,如何安排索引内的字段顺序。

这里我们的评估标准是,索引的复用能力。因为可以支持最左前缀,所以当已经有了(a,b)这个联合索引后,一般就不需要单独在a上建立索引了。因此,第一原则是,如果通过调整顺序,可以少维护一个索引,那么这个顺序往往就是需要优先考虑采用的。

所以现在你知道了,这段开头的问题里,我们要为高频请求创建(身份证号,姓名)这个联合索引,并用这个索引支持“根据身份证号查询地址”的需求。

那么,如果既有联合查询,又有基于a、b各自的查询呢?查询条件里面只有b的语句,是无法使用(a,b)这个联合索引的,这时候你不得不维护另外一个索引,也就是说你需要同时维护(a,b)、(b) 这两个索引。

这时候,我们要考虑的原则就是空间 了。比如上面这个市民表的情况,name字段是比age字段大的 ,那我就建议你创建一个(name,age)的联合索引和一个(age)的单字段索引。

索引下推

适用于mysql5.6及以上版本。

上一段我们说到满足最左前缀原则的时候,最左前缀可以用于在索引中定位记录。这时,你可能要问,那些不符合最左前缀的部分,会怎么样呢?

我们还是以市民表的联合索引(name, age)为例。如果现在有一个需求:检索出表中“名字第一个字是张,而且年龄是10岁的所有男孩”。那么,SQL语句是这么写的:

mysql> select * from tuser where name like '张%' and age=10 and ismale=1;

你已经知道了前缀索引规则,所以这个语句在搜索索引树的时候,只能用 “张”,找到第一个满足条件的记录ID3。当然,这还不错,总比全表扫描要好。

然后呢?

当然是判断其他条件是否满足。

在MySQL 5.6之前,只能从ID3开始一个个回表。到主键索引上找出数据行,再对比字段值。

而MySQL 5.6 引入的索引下推优化(index condition pushdown), 可以在索引遍历过程中,对索引中包含的字段先做判断,直接过滤掉不满足条件的记录,减少回表次数。

图3和图4,是这两个过程的执行流程图。

图3 无索引下推执行流程

图4 索引下推执行流程在图3和4这两个图里面,每一个虚线箭头表示回表一次。

图3中,在(name,age)索引里面我特意去掉了age的值,这个过程InnoDB并不会去看age的值,只是按顺序把“name第一个字是’张’”的记录一条条取出来回表。因此,需要回表4次。

图4跟图3的区别是,InnoDB在(name,age)索引内部就判断了age是否等于10,对于不等于10的记录,直接判断并跳过。在我们的这个例子中,只需要对ID4、ID5这两条记录回表取数据判断,就只需要回表2次。

小结

今天这篇文章,我和你继续讨论了数据库索引的概念,包括了覆盖索引、前缀索引、索引下推。你可以看到,在满足语句需求的情况下, 尽量少地访问资源是数据库设计的重要原则之一我们在使用数据库的时候,尤其是在设计表结构时,也要以减少资源消耗作为目标

接下来我给你留下一个问题吧。

实际上主键索引也是可以使用多个字段的。DBA小吕在入职新公司的时候,就发现自己接手维护的库里面,有这么一个表,表结构定义类似这样的:

CREATE TABLE `geek` (
`a` int(11) NOT NULL,
`b` int(11) NOT NULL,
`c` int(11) NOT NULL,
`d` int(11) NOT NULL,
PRIMARY KEY (`a`,`b`),
KEY `c` (`c`),
KEY `ca` (`c`,`a`),
KEY `cb` (`c`,`b`)
) ENGINE=InnoDB;

公司的同事告诉他说,由于历史原因,这个表需要a、b做联合主键,这个小吕理解了。

但是,学过本章内容的小吕又纳闷了,既然主键包含了a、b这两个字段,那意味着单独在字段c上创建一个索引,就已经包含了三个字段了呀,为什么要创建“ca”“cb”这两个索引?

同事告诉他,是因为他们的业务里面有这样的两种语句:

select * from geek where c=N order by a limit 1;
select * from geek where c=N order by b limit 1;

我给你的问题是,这位同事的解释对吗,为了这两个查询模式,这两个索引是否都是必须的?为什么呢?

你可以把你的思考和观点写在留言区里,我会在下一篇文章的末尾和你讨论这个问题。感谢你的收听,也欢迎你把这篇文章分享给更多的朋友一起阅读。

上期问题时间

上期的问题是,通过两个alter 语句重建索引k,以及通过两个alter语句重建主键索引是否合理。

在评论区,有同学问到为什么要重建索引。我们文章里面有提到,索引可能因为删除,或者页分裂等原因,导致数据页有空洞,重建索引的过程会创建一个新的索引,把数据按顺序插入,这样页面的利用率最高,也就是索引更紧凑、更省空间。

这道题目,我给你的“参考答案”是:

重建索引k的做法是合理的,可以达到省空间的目的。但是,重建主键的过程不合理。不论是删除主键还是创建主键,都会将整个表重建。所以连着执行这两个语句的话,第一个语句就白做了。这两个语句,你可以用这个语句代替 : alter table T engine=InnoDB。在专栏的第12篇文章《为什么表数据删掉一半,表文件大小不变?》中,我会和你分析这条语句的执行流程。

阅读原文


本文收藏来自互联网,仅用于学习研究,著作权归原作者所有,如有侵权请联系删除

markdown @tsingchan

部分引用格式为收藏注解,比如本句就是注解,非作者原文。