不知道你在实际运维过程中有没有碰到这样的情景:业务高峰期,生产环境的MySQL压力太大,没法正常响应,需要短期内、临时性地提升一些性能。

我以前做业务护航的时候,就偶尔会碰上这种场景。用户的开发负责人说,不管你用什么方案,让业务先跑起来再说。

但,如果是无损方案的话,肯定不需要等到这个时候才上场。今天我们就来聊聊这些临时方案,并着重说一说它们可能存在的风险。

短连接风暴

正常的短连接模式就是连接到数据库后,执行很少的SQL语句就断开,下次需要的时候再重连。如果使用的是短连接,在业务高峰期的时候,就可能出现连接数突然暴涨的情况。

我在第1篇文章《基础架构:一条SQL查询语句是如何执行的?》中说过,MySQL建立连接的过程,成本是很高的。除了正常的网络连接三次握手外,还需要做登录权限判断和获得这个连接的数据读写权限。

在数据库压力比较小的时候,这些额外的成本并不明显。

但是,短连接模型存在一个风险,就是一旦数据库处理得慢一些,连接数就会暴涨。max_connections参数,用来控制一个MySQL实例同时存在的连接数的上限,超过这个值,系统就会拒绝接下来的连接请求,并报错提示“Too many connections”。对于被拒绝连接的请求来说,从业务角度看就是数据库不可用。

在机器负载比较高的时候,处理现有请求的时间变长,每个连接保持的时间也更长。这时,再有新建连接的话,就可能会超过max_connections的限制。

碰到这种情况时,一个比较自然的想法,就是调高max_connections的值。但这样做是有风险的。因为设计max_connections这个参数的目的是想保护MySQL,如果我们把它改得太大,让更多的连接都可以进来,那么系统的负载可能会进一步加大,大量的资源耗费在权限验证等逻辑上,结果可能是适得其反,已经连接的线程拿不到CPU资源去执行业务的SQL请求。

那么这种情况下,你还有没有别的建议呢?我这里还有两种方法,但要注意,这些方法都是有损的。

第一种方法:先处理掉那些占着连接但是不工作的线程。

max_connections的计算,不是看谁在running,是只要连着就占用一个计数位置。对于那些不需要保持的连接,我们可以通过kill connection主动踢掉。这个行为跟事先设置wait_timeout的效果是一样的。设置wait_timeout参数表示的是,一个线程空闲wait_timeout这么多秒之后,就会被MySQL直接断开连接。

但是需要注意,在show processlist的结果里,踢掉显示为sleep的线程,可能是有损的。我们来看下面这个例子。

图1 sleep线程的两种状态在上面这个例子里,如果断开session A的连接,因为这时候session A还没有提交,所以MySQL只能按照回滚事务来处理;而断开session B的连接,就没什么大影响。所以,如果按照优先级来说,你应该优先断开像session B这样的事务外空闲的连接。

但是,怎么判断哪些是事务外空闲的呢?session C在T时刻之后的30秒执行show processlist,看到的结果是这样的。

图2 sleep线程的两种状态,show processlist结果图中id=4和id=5的两个会话都是Sleep 状态。而要看事务具体状态的话,你可以查information_schema库的innodb_trx表。

图3 从information_schema.innodb_trx查询事务状态这个结果里,trx_mysql_thread_id=4,表示id=4的线程还处在事务中。

因此,如果是连接数过多,你可以优先断开事务外空闲太久的连接;如果这样还不够,再考虑断开事务内空闲太久的连接。

从服务端断开连接使用的是kill connection + id的命令, 一个客户端处于sleep状态时,它的连接被服务端主动断开后,这个客户端并不会马上知道。直到客户端在发起下一个请求的时候,才会收到这样的报错“ERROR 2013 (HY000): Lost connection to MySQL server during query”。

从数据库端主动断开连接可能是有损的,尤其是有的应用端收到这个错误后,不重新连接,而是直接用这个已经不能用的句柄重试查询。这会导致从应用端看上去,“MySQL一直没恢复”。

你可能觉得这是一个冷笑话,但实际上我碰到过不下10次。

所以,如果你是一个支持业务的DBA,不要假设所有的应用代码都会被正确地处理。即使只是一个断开连接的操作,也要确保通知到业务开发团队。

第二种方法:减少连接过程的消耗。

有的业务代码会在短时间内先大量申请数据库连接做备用,如果现在数据库确认是被连接行为打挂了,那么一种可能的做法,是让数据库跳过权限验证阶段。

跳过权限验证的方法是:重启数据库,并使用–skip-grant-tables参数启动。这样,整个MySQL会跳过所有的权限验证阶段,包括连接过程和语句执行过程在内。

但是,这种方法特别符合我们标题里说的“饮鸩止渴”,风险极高,是我特别不建议使用的方案。尤其你的库外网可访问的话,就更不能这么做了。

在MySQL 8.0版本里,如果你启用–skip-grant-tables参数,MySQL会默认把 –skip-networking参数打开,表示这时候数据库只能被本地的客户端连接。可见,MySQL官方对skip-grant-tables这个参数的安全问题也很重视。

除了短连接数暴增可能会带来性能问题外,实际上,我们在线上碰到更多的是查询或者更新语句导致的性能问题。其中,查询问题比较典型的有两类,一类是由新出现的慢查询导致的,一类是由QPS(每秒查询数)突增导致的。而关于更新语句导致的性能问题,我会在下一篇文章和你展开说明。

慢查询性能问题

在MySQL中,会引发性能问题的慢查询,大体有以下三种可能:

  1. 索引没有设计好;
  2. SQL语句没写好;
  3. MySQL选错了索引。

接下来,我们就具体分析一下这三种可能,以及对应的解决方案。

导致慢查询的第一种可能是,索引没有设计好。

这种场景一般就是通过紧急创建索引来解决。MySQL 5.6版本以后,创建索引都支持Online DDL了,对于那种高峰期数据库已经被这个语句打挂了的情况,最高效的做法就是直接执行alter table 语句。

比较理想的是能够在备库先执行。假设你现在的服务是一主一备,主库A、备库B,这个方案的大致流程是这样的:

  1. 在备库B上执行 set sql_log_bin=off,也就是不写binlog,然后执行alter table 语句加上索引;
  2. 执行主备切换;
  3. 这时候主库是B,备库是A。在A上执行 set sql_log_bin=off,然后执行alter table 语句加上索引。

这是一个“古老”的DDL方案。平时在做变更的时候,你应该考虑类似gh-ost这样的方案,更加稳妥。但是在需要紧急处理时,上面这个方案的效率是最高的。

导致慢查询的第二种可能是,语句没写好。

比如,我们犯了在第18篇文章《为什么这些SQL语句逻辑相同,性能却差异巨大?》中提到的那些错误,导致语句没有使用上索引。

这时,我们可以通过改写SQL语句来处理。MySQL 5.7提供了query_rewrite功能,可以把输入的一种语句改写成另外一种模式。

比如,语句被错误地写成了 select * from t where id + 1 = 10000,你可以通过下面的方式,增加一个语句改写规则。

mysql> insert into query_rewrite.rewrite_rules(pattern, replacement, pattern_database) values ("select * from t where id + 1 = ?", "select * from t where id = ? - 1", "db1");

call query_rewrite.flush_rewrite_rules();

这里,call query_rewrite.flush_rewrite_rules()这个存储过程,是让插入的新规则生效,也就是我们说的“查询重写”。你可以用图4中的方法来确认改写规则是否生效。

图4 查询重写效果导致慢查询的第三种可能,就是碰上了我们在第10篇文章** 《MySQL为什么有时候会选错索引?》** 中提到的情况,MySQL选错了索引。

这时候,应急方案就是给这个语句加上force index。

同样地,使用查询重写功能,给原来的语句加上force index,也可以解决这个问题。

上面我和你讨论的由慢查询导致性能问题的三种可能情况,实际上出现最多的是前两种,即:索引没设计好和语句没写好。而这两种情况,恰恰是完全可以避免的。比如,通过下面这个过程,我们就可以预先发现问题。

  1. 上线前,在测试环境,把慢查询日志(slow log)打开,并且把long_query_time设置成0,确保每个语句都会被记录入慢查询日志;
  2. 在测试表里插入模拟线上的数据,做一遍回归测试;
  3. 观察慢查询日志里每类语句的输出,特别留意Rows_examined字段是否与预期一致。(我们在前面文章中已经多次用到过Rows_examined方法了,相信你已经动手尝试过了。如果还有不明白的,欢迎给我留言,我们一起讨论)。

不要吝啬这段花在上线前的“额外”时间,因为这会帮你省下很多故障复盘的时间。

如果新增的SQL语句不多,手动跑一下就可以。而如果是新项目的话,或者是修改了原有项目的 表结构设计,全量回归测试都是必要的。这时候,你需要工具帮你检查所有的SQL语句的返回结果。比如,你可以使用开源工具pt-query-digest(https://www.percona.com/doc/percona-toolkit/3.0/pt-query-digest.html)。

QPS突增问题

有时候由于业务突然出现高峰,或者应用程序bug,导致某个语句的QPS突然暴涨,也可能导致MySQL压力过大,影响服务。

我之前碰到过一类情况,是由一个新功能的bug导致的。当然,最理想的情况是让业务把这个功能下掉,服务自然就会恢复。

而下掉一个功能,如果从数据库端处理的话,对应于不同的背景,有不同的方法可用。我这里再和你展开说明一下。

  1. 一种是由全新业务的bug导致的。假设你的DB运维是比较规范的,也就是说白名单是一个个加的。这种情况下,如果你能够确定业务方会下掉这个功能,只是时间上没那么快,那么就可以从数据库端直接把白名单去掉。
  2. 如果这个新功能使用的是单独的数据库用户,可以用管理员账号把这个用户删掉,然后断开现有连接。这样,这个新功能的连接不成功,由它引发的QPS就会变成0。
  3. 如果这个新增的功能跟主体功能是部署在一起的,那么我们只能通过处理语句来限制。这时,我们可以使用上面提到的查询重写功能,把压力最大的SQL语句直接重写成"select 1"返回。

当然,这个操作的风险很高,需要你特别细致。它可能存在两个副作用:

  1. 如果别的功能里面也用到了这个SQL语句模板,会有误伤;
  2. 很多业务并不是靠这一个语句就能完成逻辑的,所以如果单独把这一个语句以select 1的结果返回的话,可能会导致后面的业务逻辑一起失败。

所以,方案3是用于止血的,跟前面提到的去掉权限验证一样,应该是你所有选项里优先级最低的一个方案。

同时你会发现,其实方案1和2都要依赖于规范的运维体系:虚拟化、白名单机制、业务账号分离。由此可见,更多的准备,往往意味着更稳定的系统。

小结

今天这篇文章,我以业务高峰期的性能问题为背景,和你介绍了一些紧急处理的手段。

这些处理手段中,既包括了粗暴地拒绝连接和断开连接,也有通过重写语句来绕过一些坑的方法;既有临时的高危方案,也有未雨绸缪的、相对安全的预案。

在实际开发中,我们也要尽量避免一些低效的方法,比如避免大量地使用短连接。同时,如果你做业务开发的话,要知道,连接异常断开是常有的事,你的代码里要有正确地重连并重试的机制。

DBA虽然可以通过语句重写来暂时处理问题,但是这本身是一个风险高的操作,做好SQL审计可以减少需要这类操作的机会。

其实,你可以看得出来,在这篇文章中我提到的解决方法主要集中在server层。在下一篇文章中,我会继续和你讨论一些跟InnoDB有关的处理方法。

最后,又到了我们的思考题时间了。

今天,我留给你的课后问题是,你是否碰到过,在业务高峰期需要临时救火的场景?你又是怎么处理的呢?

你可以把你的经历和经验写在留言区,我会在下一篇文章的末尾选取有趣的评论跟大家一起分享和分析。感谢你的收听,也欢迎你把这篇文章分享给更多的朋友一起阅读。

上期问题时间

前两期我给你留的问题是,下面这个图的执行序列中,为什么session B的insert语句会被堵住。


我们用上一篇的加锁规则来分析一下,看看session A的select语句加了哪些锁:

  1. 由于是order by c desc,第一个要定位的是索引c上“最右边的”c=20的行,所以会加上间隙锁(20,25)和next-key lock (15,20]。
  2. 在索引c上向左遍历,要扫描到c=10才停下来,所以next-key lock会加到(5,10],这正是阻塞session B的insert语句的原因。
  3. 在扫描过程中,c=20、c=15、c=10这三行都存在值,由于是select *,所以会在主键id上加三个行锁。

因此,session A 的select语句锁的范围就是:

  1. 索引c上 (5, 25);
  2. 主键索引上id=15、20两个行锁。

这里,我再啰嗦下,你会发现我在文章中,每次加锁都会说明是加在“哪个索引上”的。因为,锁就是加在索引上的,这是InnoDB的一个基础设定,需要你在分析问题的时候要一直记得。

评论区留言点赞板:

@HuaMax 给出了正确的解释。

@Justin 同学提了个好问题,

@信信 提了一个不错的问题,要知道最终的加锁是根据实际执行情况来的。所以,如果一个select * from … for update 语句,优化器决定使用全表扫描,那么就会把主键索引上next-key lock全加上。

@nero 同学的问题,提示我需要提醒大家注意,“有行”才会加行锁。如果查询条件没有命中行,那就加next-key lock。当然,等值判断的时候,需要加上优化2(即:索引上的等值查询,向右遍历时且最后一个值不满足等值条件的时候,next-key lock退化为间隙锁。)。

@小李子、@发条橙子同学,都提了很好的问题,这期高质量评论很多,你也都可以去看看。

最后,我要为元旦期间还坚持学习的同学们,点个赞 ^_^

阅读原文


本文收藏来自互联网,仅用于学习研究,著作权归原作者所有,如有侵权请联系删除

markdown @tsingchan

部分引用格式为收藏注解,比如本句就是注解,非作者原文。